0=-16t^2+130+10

Simple and best practice solution for 0=-16t^2+130+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+130+10 equation:



0=-16t^2+130+10
We move all terms to the left:
0-(-16t^2+130+10)=0
We add all the numbers together, and all the variables
-(-16t^2+130+10)=0
We get rid of parentheses
16t^2-130-10=0
We add all the numbers together, and all the variables
16t^2-140=0
a = 16; b = 0; c = -140;
Δ = b2-4ac
Δ = 02-4·16·(-140)
Δ = 8960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8960}=\sqrt{256*35}=\sqrt{256}*\sqrt{35}=16\sqrt{35}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{35}}{2*16}=\frac{0-16\sqrt{35}}{32} =-\frac{16\sqrt{35}}{32} =-\frac{\sqrt{35}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{35}}{2*16}=\frac{0+16\sqrt{35}}{32} =\frac{16\sqrt{35}}{32} =\frac{\sqrt{35}}{2} $

See similar equations:

| 12/8=4.5/n | | 3(.8-b)=1.8 | | 108=(x-2)*180 | | 3.x+10=19 | | 144=4-10x | | 24+2x=29 | | 2.1x+1.8=8.4 | | 2x+8=-48-6xx= | | 5b+3=20 | | 150-3x=300 | | 19+2x=24 | | 21−120(3x)=14−120(2x) | | 4|x-15|=4•(-9) | | 6x-4=15+16x | | 3-(2x-4)=7-(x-3) | | -3+5x-7=(-20) | | 200+0.15x=3225 | | —3+5x-7=-20 | | Y=2x+5/3=0 | | -8y-19=-11 | | 5=-16t^2+30t+6 | | 3(x-6)+2x=19 | | .25x-8=2 | | r+4.6/r-2.3=3.3 | | |4x+2|-3=-7 | | 3x+12=-17 | | 4(y–4)=8 | | 14−2p=4 | | –4n+7+2n=1 | | 4(w-5)-5=-4(-7w+7)-6w | | 68x-2=42 | | 386+x=52 |

Equations solver categories